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Kinetics of structural changes in superhelical DNA

Gero Wedemann, Christian Mu¨nkel,* Gunther Scho¨ppe,† and Jo¨rg Langowski‡

Biophysics of Macromolecules (H0500), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidel
and Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Ge

~Received 24 July 1997; revised manuscript received 30 March 1998!

The time evolution of global structural rearrangements in supercoiled DNA caused by changes in local
bending was investigated using Brownian dynamics computer simulations. Equilibrium states of superhelical
DNA with lengths from 1180 to 1770 base pairs were modeled at different values of the linking number and
in different ionic strength solutions. The introduction of a local bend induces a transition to a new equilibrium
state where one end loop of the plectonemic structure is at the position of the permanent bend. This transition
occurs on a time scale of 1 ms. We find that the transition can proceed either by a ‘‘reptational motion’’ of the
two opposing double strands~slithering! or by extrusion/absorption of branched parts of the superhelix. We
estimate the diffusion coefficient for the motion of the two double strands against each other. A simplified
model for this kinetics based on a transition matrix is presented. The relaxation time scales approximately with
the square of the DNA length.@S1063-651X~98!06809-3#

PACS number~s!: 87.15.Da, 05.40.1j, 87.15.He
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I. INTRODUCTION

An important step in the activation of transcription is t
interaction of a transcription factor bound to an enhancer
with the transcription complex bound to the promoter. E
hancer and promoter may be hundreds or thousands of
pairs apart, too far for a direct interaction, which therefo
proceeds through the formation of a DNA loop. The pro
ability of forming this loop can depend on the structure
the intervening DNA. It has been argued, for instance, t
bends induced by other DNA-binding proteins or by spec
sequences can help form the loop by bringing the ends of
DNA segment into contact@1–4#.

For distances up to about 500 base pairs~bp! this increase
of contact probability is mainly a direct consequence of
bending of the DNA segment. At longer distances, the e
to-end distance of a linear DNA is not influenced much
the presence of internal bends; however, it could be sho
experimentally@5,6# and theoretically@7# that in a superhe-
lical DNA bends localize with preference in the end loops
the interwound structure. This localization will greatly e
hance the interaction probability of DNA sites that are
cated symmetrically with respect to the bend. Thus, up
insertion of a bend into the plectonemic region of a super
lix, the structure will globally rearrange so that an end lo
is formed at the position of the bend. While the princip
phenomenon has been known for some time, the kinetic
structural rearrangements after local bending~e.g., due to
interaction with regulatory proteins! has not been studied i
great detail. We have recently given indications that be
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induced conformational transitions in superhelical DNA a
comparatively slow; for a structural transition induced
placing a bend in the center of an 1870-bp interwound
perhelix, the characteristic time for forming the new e
loop was 0.5 ms@8#.

In order to assess the time scales on which such glo
structural transitions in superhelical DNA occur and to d
termine their mechanisms, it now becomes important to
vestigate systematically the dependence of their kinetics
parameters such as DNA length, superhelical density,
ionic strength. While a variety of techniques have been u
to model the global structure and dynamics of DNA@9#, the
major part of such studies focused on analyzing equilibri
properties of superhelical DNA such as the ratio of twist
writhe, radius of gyration, or diffusion coefficients. Brown
ian dynamics~BD! @10# offers the unique advantage tha
unlike other models@11,12#, it does not need arbitrary con
stants or rescaling of energy in order to get the correct t
evolution of a polymer chain in a viscous medium. On
such parameters are used that are accessible by mea
physical measurements such as flexibility of the DN
charge density, hydrodynamic, and electrostatic radius.

The results of the present article are based on B
simulated trajectories of~1180–1770!-bp superhelical DNA
at varying linking numbers in aqueous solution for a to
simulation time of 400 ms. We obtain information on th
equilibrium dynamics as well as the kinetics of structu
rearrangement after inserting a 90° permanent bend.

II. METHODS

A. Brownian dynamics algorithm

Our BD model is based on the algorithm proposed
Ermak and McCammon@10# and Fixman@13#. Similar mod-
els have been applied to DNA for some time~e.g.,@14# and
later work by the same author!. We have recently extende
the BD algorithm to include the topological constraints
superhelical DNA and local bending@8,15,4#.
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In this work we used the programCORCHY written by
Klenin et al. as described in detail in@4#. The DNA is de-
scribed as a chain of beads. A local coordinate system
attached to each bead. The coordinate system at beadi can
be transformed to the coordinate system at beadi 11 by a
Euler transformation with the anglesa i , b i , and g i . The
distance between two adjacent beads is much smaller
the persistence length~about 5 times!. The beads interac
through elastic forces. The energies for stretchingU (s),
bendingU (b), and torsionU (t) can be computed as

U ~s!~bi !5a~s!
kbT

2
~bi2bi

0!2,

U ~b!~b i !5a~b!
kbT

2
b i

2,

U ~ t !~a i1g i !5a~ t !
kbT

2
~a i1g i !

2. ~1!

The electrostatic interaction between the charged ph
phate backbone is described by a solution of the Deb
Hückel equation for two charged line segments

Ei j
~e!5

n2

D E dl iE dl j

exp~2kr i j !

r i j
. ~2!

D is the dielectric constant of water andk the inverse of the
Debye length.r i j is the distance between the current po
tions at the segments to which the integration parame
l i ,l j correspond. The charge per unit lengthn is chosen
such that the potential at the radius of the DNA coincid
with the solution of the Poisson-Boltzmann equation fo
cylinder with charge per lengthn0* . n0* is the charge per
length of the DNA in the presence of the Gouy layer
immobile counterions, which can be computed as@16#

n0* 5qn0 , ~3!

where n0522e/D is the charge per length of the nake
DNA. e is the proton charge andD50.34 nm is the distance
between base pairs. Following Stigter@16#, the value ofq is
0.73. In order to save computation time a tabulation of
the double integral~2! is used. The table is parametrized b
the distance of the segments and three values describin
relative orientation. During the simulation a linear interpo
tion was used to obtain the forces.

Bent sequences are realized using a vectorBi describing
the equilibrium position of one segment with respect to
neighbor segment@4#. The energy of bending changes th
to

U ~b!~u i !5a~b!
kbT

2
u i

2, ~4!

where u i is defined by cos(ui)5BW i•uW i11 with the vectorui
pointing from beadi to beadi 11. Hydrodynamic interac-
tions are treated using the Rotne-Prager tensor@17#
is
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Di j 5d i j

kbT

6phs
2~d i j 21!

kbT

8phr i j

3F S 11
rW i j •rW i j

r i j
2 D 1

2s2

r i j
2 S 1

3
2

rW i j •rW i j

r i j
2 D G . ~5!

Starting from one configuration, the next configuration
generated by a first-order displacement of the position v
tors rW i and the relative twisting anglesfW i :

rW i~ t1dt !5rW i~ t !1(
j 51

N

Di j FW j

dt

kbT
1RW i~ t !,

~6!

fW i~ t1dt !5fW i~ t !1DrTi

dt

kbT
1gi~ t !Ri~ t !,

whereN is the number of segments,Fi the sum of the acting
forces,Dr the rotational diffusion coefficient of a segmen
andTi the acting torque. The random displacementsRi and
gi are Gaussian distributed and have the properties

^RW i~ t !&50W , ^RW i~ t !•RW j~ t !&52Di j dt,
~7!

^gi~ t !&50W , ^gi~ t !gj~ t !&52Drd i j dt.

We used commonly accepted values for the parame
~Table I!. During the course of this work a value of 66 n
for the stretching persistence length was published@18#,
which is different from the one used here. However, as
ported by Hammermann@19#, the quantities simulated her
are not influenced much by a change in stretching const

All simulations started initially from a flat circle. The
measurement started after full relaxation of the syste
which took about 1–2 ms corresponding to the slowly dec
ing component of the relaxation of the writhe@8#.

B. Characterization of the structure

1. End loop detection

The global structure and dynamics of a plectonemic
perhelix can be described by a plot of the end loop positi
versus time@20#. While we and others have described seve
algorithms for automatic end loop detection@7,8,20#, we
found their detection efficiency not always satisfactory. W
therefore developed an improved algorithm~Appendix!,
which we tested by comparing the automatically detec
end loop positions in 150 random configurations with th
visualizations. All end loops determined by the algorith

TABLE I. Parameters used in the simulation.

Stretching persistence length 308 nm
Bending persistence length 50 nm
Torsion persistence length 65 nm
Hydrodynamic radius 1.2 nm
Electrostatic radius 1.2 nm
Temperature 20 °C
Length of segments 10 nm
Time step of simulation 20 ns
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were also found by visual inspection without any false po
tives; about 10% of the loops were false negatives, i.e.,
algorithm could not find them, although they were presen
the visualization.

2. Superhelix diameter

The nearest neighbornnb( i ) of a segmenti is defined as
the segment with the shortest distance toi excluding a num-
ber of adjacent segments equal to the number of segmen
an end loop~eight in our case!. The superhelix diameterdSH
is calculated as the mean value of the distance of each
ment to its nearest neighbor@21#:

dSH5uxW i~ t !2xnnb~ i !W ~ t !u. ~8!

In contrast to the original definition, we omitted the se
ments in the end loops because they do not belong to
plectonemic region~s! by skipping the four segments that a
adjacent to the segment detected as an end loop.

3. Diffusion coefficient

The random movement of a point inN-dimensional space
can be described by a random walk. The mean square o
displacementx(t) of the point after a timet is

^x2&52NDt. ~9!

The random movement of both strands of a plectone
structure against each other~slithering! can be described as
one-dimensional random walk. We can calculate a diffus
coefficient for this motion through the change in the end lo
position. The random displacementx is calculated using the
difference between the position of one end loop of the c
sidered configuration and that of the start configuration a
the time t. For a one-dimensional random walk with diffu
sion coefficientDsl the mean square displacement^x2& is,
according to Eq.~9!,

^x2&52Dslt. ~10!

A plot of Dsl(t)5^x2&/2t versust will yield the dependence
of Dsl on the time scale.

III. RESULTS

A. Equilibrium

In order to check the hydrodynamics ofCORCHY we per-
formed simulations of a 50-nm linear DNA fragment
I 50.1M NaCl for 40 ms. Figure 1 shows the mean of t
squared displacement of the center of mass at a time di
encet vs t. A fit of Eq. ~9! to the first 15 ms results in a
diffusion coefficient of (2.8560.01)310211 m2/s.

Brownian dynamics calculations on a superhelical DN
were done for each set of parameters for 5–20 ms. Figu
shows the end loop plot of a 1475-bp DNA structure~50
segments! at DLk528 and an ionic strength of 0.1M NaCl.
After the first millisecond the DNA has two end loops a
the writhe has reached its equilibrium value~data not
shown!. Most of the time we find two end loops with
distance of about 50% of the total length, indicating the
sence of branches. For a total time of about 2.2 ms, th
i-
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looped branched configurations are observed. It is equiva
to a fraction of branched states of 2.2/19'0.12. This is an
approximate value because the trajectory is too short for
exact determination of this value: Here we observed only
short time period of three arm configurations.

The apparent slithering diffusion coefficient of this sy
tem Dsl5^x2&/2t is plotted againstt in Fig. 3. It decreases
with t, indicating the predominance of faster local motion
short time scales. The initial value ofDsl is 31.7
310212 m2/s. Dsl approaches a plateau for larget. The sta-
tistical noise for values greater than 0.4 ms onDsl becomes
rather high so that the plateau value is better determi
from an extrapolation ofDsl versus 1/t to t→` ~Fig. 4!. The
plateau value ofDsl is (2.560.2)310212 m2/s.

The dynamics of the DNA changes if we introduce a p
manent bend in the chain. Figure 5 is an end loop plot of
same superhelical DNA as above but with a permanent b
at position 0. Almost always the end loops are loca
around 0% and 50% of the length of the DNA. We obser
three arm branched configurations in the intervals@6.5 ms,
7.8 ms#, @10.9 ms, 13.4 ms#, and @14.4 ms, 16.3 ms#. Skip-
ping the first 1.5 ms we compute an approximate ratio

FIG. 1. Mean of the squared displacement of the center of m
at a time differencet vs t of a 50-nm linear DNA structure at 0.1M
NaCl and a linear fit of the first 15 ms~dashed line!.

FIG. 2. Positions of end loops of a 1475-bp DNA structu
(DLk528, 0.1M NaCl! versus simulation time.
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branched states to 5.7/18.5'0.3, which is about 3 times
higher than without the bend.

Systems that differ in length~1180–1770 bp!, linking
number (26 to 28), and ionic strength (0.01M – 1M NaCl!
from the previous system were calculated for 5 ms, each w
a permanent bend of 90°. We confirmed the previous ob
vation of this and other groups that in these systems D
has a linear plectonemic structure with the bend in an
loop @7,21#. Corresponding superhelix diameters are summ
rized in Table II. The errors of 1475-bp DNA,DLk528 at
I 50.1M , are smaller because, due to a longer simulat
time, the data basis is bigger. In solution of an ionic stren
of 0.01M the simulation time step had to be decreased b
factor of 4–5 ns. With this time step it was not possible
collect enough data in reasonable time so that we decided
to examine the end loop dynamics of superhelical DNA u
der these conditions.

FIG. 3. Diffusive motion of the two strands of the superhe
~slithering! of a 1475-bp DNA structure (DLk528, 0.1M NaCl!.
The diffusion coefficientDsl5^x2&/2t is plotted againstt.

FIG. 4. Diffusive motion of the two strands of the superhe
~slithering! of a 1475-bp DNA structure (DLk528, 0.1M NaCl!.
The diffusion coefficientDsl is plotted against 1/t.
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B. Nonequilibrium

As we have seen in Sec. III A, the most probable config
ration for the superhelical DNA considered here is u
branched and has the permanent bend at one end loop.
put a new permanent bend into a configuration of a nonb
DNA structure, we expect this permanent bend to move
the end loop. To assess the relaxation time for this proc
we first equilibrate the starting configuration with a perm
nent bend at position 0, change the position of the perman
bend to another location, and continue the simulation u
equilibrium is reached again.

There are two possible mechanisms to explain the rest
turing: The two strands are moving relative to each ot
~slithering! until the permanent bend has reached one
loop and is trapped there, or a new arm is formed and gro
until one of the initial arms disappears@8#. We observed both
mechanisms: In Fig. 6 we see end loop plots of two differ
simulations, each one exhibiting one type of restructuring

Since both slithering and rearrangement of arms occu
a random, nondirected way, one would expect a depende
of the relaxation time on the distance between the bend
the end loop. We have performed simulations of a 1475
DNA structure withDLk528 at an ionic strength of 0.1M
NaCl and determined the relaxation time as a function of t
distance. The mean values of the relaxation times of ten
culations for each distance are shown in Fig. 7. The rel
ation times show a broad distribution around the mean va
The overall mean value is (0.6461.07) ms, but a clear
maximum is seen if the bend is inserted in the center.

Figure 8 shows the mean relaxation times after insertin
permanent bend at a distance of 80 nm~236 bp! from the end
loop for lengths between 1180 and 1770 bp. The other
rameters~superhelix density and ionic strength! remain un-
changed. For each length we performed eight simulatio
The mean relaxation times after inserting a permanent b
at the same distance for superhelix densities between20.043
and20.057 are shown in Fig. 9. The relaxation time und
these conditions at 0.1M NaCl is (0.6460.29) ms, at 1M
(1.6161.63) ms.

FIG. 5. Positions of end loops of 1475-bp DNA,DLk528,
0.1M NaCl, with a permanent bend at 0% of the length, plott
against simulation time.
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TABLE II. Mean value and standard deviation of the superhelix diameter dependent on physical parameters. If not mentioned di
the length is 1475 bp, the superhelix density is20.057, and the ionic strength is 0.1M NaCl.

Length ~bp! dSH ~nm! Ionic strength (M NaCl! dSH ~nm! Superhelix density dSH ~nm!

1180 9.161.9 20.057 10.461.0
1475 10.461.0 0.1 10.461.0 20.050 13.262.8
1770 10.961.7 1 8.761.4 20.043 15.363.7
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IV. DISCUSSION

A. Equilibrium

According to Tirado and Garcia de la Torre@22,23#, the
diffusion coefficient of a cylinder with lengthl and hydro-
dynamic radiusr HD is

Dcyl5~1/3!~D i
cyl12D'

cyl!, ~11!

with

FIG. 6. Positions of end loops plotted against simulation ti
after inserting a permanent bend~a! at 26% of length showing slith-
ering and~b! at 32% showing structural rearrangement.
D i
cyl5

kBT

2ph l
~ ln p20.20710.980p2120.133p22!,

~12!

D'
cyl5

kBT

4ph l
~ ln p20.83910.185p2110.233p22!,

p5
l

2r HD
, ~13!

whereh is the viscosity of the solvent andT its temperature.
For a rod of length 50 nm~147 bp! and a hydrodynamic
radius 1.2 nm, Eq.~11! yields 2.89310211 m2/s. The persis-
tence length of DNA is 50 nm, therefore we considered t
fragment stiff in a first approximation. The value comput
by Brownian dynamics@(2.8560.01)310211 m2/s# agrees
with the rigid rod value within statistical error. Experiment
sedimentation velocity studies of double stranded DNA fra
ments of 145-bp DNA yield a sedimentation coefficients20,w

0

of 5.2 @24#. This is equivalent to a diffusion coefficient o
2.7310211 m2/s, again in good agreement with our comp
tation.

Monte Carlo calculations of equilibrium configurations
superhelical DNA were done by Vologodskiiet al. @21#.
With the results presented there it is possible to calculate
ratio of conformations with three arms~without permanent
bends!. For DNA of 1475 bp and superhelix density20.057,
their equations predict a ratio of 0.03, which is about 4 tim
smaller than our value for DNA without permanent bend
Our value is more approximate because the trajectory is

e FIG. 7. Relaxation time for different distances of the insert
permanent bend to the end of the superhelix. Data are from si
lations ~bold squares! and the simplified model~circles!.
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short for an exact determination of this value. This can
seen, e.g., from the fact that we observed only one short
period of three-arm configurations. Nevertheless, both va
are of the same order of magnitude.

A comparison of Fig. 2 with Fig. 5 suggests that this ra
is bigger for DNA with a permanent bend. This is in agre
ment with results of simulations by Sprous and Harvey@25#.
Klenin et al. @7# report a ratio of 0.25 of branched states f
2700-bp DNA with and without a permanent bend. Th
might suggest that a permanent bend has less influenc
the global structure of longer DNA. All studies predict th
permanent bends are located at an end loop with high p
ability.

Questions similar to those in Sec. III A were analyzed
Sprous and Harvey on a 1260-bp DNA structure with
model based on molecular dynamics@25#. Their end loop
plots look similar to those presented here. In their calcu

FIG. 8. Relaxation time after inserting a permanent bend
different lengths of DNA. The data from simulations~squares with
bold error bars! are compared with the simplified model~circles!.

FIG. 9. Relaxation time after inserting a permanent bend
different superhelix densities. The data from simulation~squares
with error bars! are compared with predicted values according
Eq. ~15! ~diamonds!.
e
e
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-
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tions a superhelix without a bent sequence is always
branched. Our calculations disagree with their observa
that DNA with a bend is mostly branched.

We find that the slithering diffusion coefficient of
1475-bp DNA structure at short time scales is 31
310212 m2/s. This is in agreement with the value of 3
310212 m2/s calculated by Chirico and Langowski analy
ing the motion of one segment tangent to the chain@8#. The
diffusion coefficient for larger time scales decreases to (
60.2)310212 m2/s; this smaller value corresponds to th
correlated slithering of the whole chain.

Superhelix diameters for different superhelix densities
termined by electron microscopical methods@26# are in good
agreement with the values calculated here~Table III!. The
measured and the theoretical values agree within 5%, wh
is smaller than the error of about 1 nm of the theoretical a
experimental values. It is notable, however, that all th
theoretical values are bigger than the measured ones.
reason could be the procedure of analysis of the experime
data. Boleset al.also report about another more approxima
procedure of analysis whose results are about 1 nm big
However, they examined DNA fixed on a surface and
investigate free DNA in solution.

Recent scanning force microscope measurements
1868-bp superhelical DNA@27# gave an average superhelic
diameter of 2769 nm at a superhelix density ofs5
20.033. This is comparable to the trend of our results.

B. Nonequilibrium

A smaller set of nonequilibrium states of 1870-bp DN
(DLk5210) was analyzed by Chirico and Langowski@8#.
By analyzing trajectories up to 2 ms they concluded t
large-scale changes of conformation are mainly caused
the rearrangement of branches rather than slithering. T
analysis with about 40 times more data now implies t
slithering is another important mechanism of restructuri
For a detailed analysis of the dependence between the s
ering diffusion coefficient and the restructuring time see S
IV C.

Tan et al. investigated shorter DNA~600 bp! using mo-
lecular dynamics simulations without hydrodynamic intera
tions @20#. They found that at higher superhelix density t
structural changes are mainly caused by slithering while
lower superhelix density structural rearrangements beco
more important. This conclusion may not be valid for larg
DNA structures, 600 bp being equal to about only four p
sistence lengths. The calculated relaxation time is of the
der of nanoseconds, about six orders of magnitude fa
than in calculations using Brownian dynamics such as@8#
and our investigations. The cause of this difference is
lack of stochastic forces and hydrodynamic friction in t

r

r

TABLE III. Comparison of the values of the superhelix diam
eter ~nm! measured by Boleset al. and our results.

Superhelix density Experiment Theory

20.057 11.9 10.461.0
20.050 13.4 13.262.8
20.043 15.3 15.363.7
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thermal molecular dynamics model.
A possible explanation of the different relaxation times

different superhelix densities is proposed by Marko and S
gia @28#. From the diffusive motion of two parallel cylinder
along their long axis they estimate a typical time for a diff
sive slithering motion of superhelical DNA:

ts5
2phL3

kBT ln~R/r h!
. ~14!

h is the viscosity of water, 2L the length of the DNA,r h the
hydrodynamic radius of the DNA, andR the superhelix ra-
dius. While ts scales withL3, the relaxation times we ob
served scale withL2 @Eq. ~9!#. The other scaling behavio
reflects that DNA is not stiff. It can be thought of as consi
ing of smaller parts that move independently, changing th
distance to each other. A detailed analysis has been d
recently by Marko@29#. As an approximation we can assum
that the time scales of the motion of the smaller parts sc
with superhelix diameter in the same way asts and therefore
estimate the relaxation time at different superhelical de
ties. Equation~14! can be written as

ts
~1!

ts
~2! 5

ln~R2 /r h!

ln~R1 /r h!
. ~15!

Starting from the relaxation time ats520.057 and the
calculated superhelix diameter~Table II!, we determine the
relaxation times at other superhelix densities~Fig. 9!. The
results seem to be compatible with the values obtained f
the simulation.

C. Simplified numerical model

In order to get an estimate of the scaling of the relaxat
times as a function of different parameters such as lengt
position of inserted bend we developed a simplified mo
that allows us to get these times with much less comp
tional effort. The model consists of three arms with varyi
discrete numbers of segments~see Fig. 10!. One move con-
sists of a segment interchange between the arms with
lengthsl 1 ,l 2 ,l 3 . We assume that the influence of the pro
ability for each of these moves on the configuration can
neglected. The permanent bend is always at the tip of arm
This excludes branched states where the bend is not in

FIG. 10. Model of DNA that consists of three loops that chan
their lengths in a diffusive manner. The double arrows symbo
the possible transitions. The permanent bend is located at the t
loop 3.
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end loop. The total length remains constant and therefore
system can be described by the lengths of two arms.
system is moving in a two-dimensional state space. At e
step there are six different possible transitions for branc
and four for unbranched states. In our model the equilibriu
where the bend is in an end loop and no branches are pre
has the property

l 150∨ l 250. ~16!

The changes of the lengths can be described as a ran
walk on a directed weighted graph. The vertices of the gra
represent possible states and the edges possible transi
Each vertex has a certain probability of being occupied
each time step. For the next time step the new probability
a vertex being occupied is given by the probability of t
neighbor vertices weighted by the probabilities of transitio
i.e., the weights of the edges.

The probability of a state with arm lengthsl 1 and l 2 after
p steps can be described using a~normalized! probability
matrix Cp( l 1 ,l 2):

(
l 1 ,l 250

L

Cp~ l 1 ,l 2!51. ~17!

The sums of the probabilities at the vertices fulfilling cond
tion ~16! give the probability that the system has reached
equilibrium state in this step. The probability that the eq
librium states are reached afterp steps is then

(
l50

L

Cp~0,l!1 (
l50

L

Cp~l,0!. ~18!

The state after each time step can be calculated using a t
fer matrix T:

Cp115TCp . ~19!

T( l 1 ,l 2)( l
18 ,l

28) is the probability for the transition from stat

$ l 1 ,l 2% to $ l 18 ,l 28%. For equilibrium states we hav
T( l 1 ,l 2)( l 1 ,l 2)51 and zero for transitions to other states. F

nonequilibrium$ l 1 ,l 2% only six transitions are possible~ar-
rows in Fig. 10!. This means that thenT( l 1 ,l 2)( l

18 ,l
28) is zero

except in the cases

l 12 l 18561∧ l 22 l 2850,

l 22 l 28561∧ l 12 l 1850, ~20!

l 12 l 18561∧ l 22 l 28571.

The probability that a state with two arms changes into
state with three arms is expressed by the branching prob
ity wbranch. Thus the elements ofT( l 1 ,l 2)( l

18 ,l
28) can be written

for nonequilibrium$ l 1 ,l 2% as

e
e
of
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T~ l 1 ,l 2!~ l
18 ,l

28!55
1/6, l 11 l 2,L∧ l 181 l 28<L

0,52wbranch/2, l 11 l 25L∧ l 181 l 285L

wbranch/2, l 11 l 25L∧ l 181 l 28,L

0, in all other cases.
~21!

Starting from one special configurationC0 , we can com-
pute the probability matricesCp ; p.0 iteratively using Eq.
~19!. The probability to reach equilibrium is given by E
~18!. From this distribution of the relaxation time we ca
compute the mean and variance.

The relation between a model step and a real time ste
not given a priori and one has to calibrate the time sca

FIG. 11. Probability density of the relaxation times for the d
tances 6, 8, and 12 segments of 50 segments of the permanent
to the end of the superhelix. The times at which the total probab
has reached 50% are marked with vertical lines.

FIG. 12. Distribution of the relaxation times after inserting
permanent bend at a distance 9 segments away from the end o
superhelix in a chain of 50 segments for branching probabilities
1 ~dashed line!, 0.5 ~solid line!, and 0.02~dotted line!.
is

against the BD simulation. For that reason we compared
relaxation times for different distances between the inse
permanent bend and the end of the superhelix from the si
lation and the times predicted by the model~see Fig. 7!.
Using a Gaussian least-squares method we found that
value 1 ms/145.756.9ms per step in the model minimize
the difference between the simulation and model. With t
value we calibrated the calculations of the model for diffe
ent lengths of DNA and compared it with the results from t
BD simulations~Fig. 8! with good agreement.

The mean time of the diffusive motion of a segment by
own length in BD simulations can be computed using
slithering diffusion coefficient and Eq.~10! to 20 ms of the
same order as the calibration value. Therefore, it is poss
to describe the dependence of the relaxation time on the
tance of the permanent bend from the end of the superh
and on the length of the DNA by a simplified numeric
model without adjusting parameters such as the branch
probability. This model also allows one to calculate larg
systems with more branches; the state space will then ha
higher dimension.

end
y

the
f

FIG. 13. Finite size scaling for different sizes of the system. T
permanent bend is inserted in the middle between the ends o
superhelix. The abscissa shows the length of the DNAL and the
ordinate~a! the probability density at 50% total probability and~b!
the time at this probability. The relaxation time is proportional
L22,03 and the probability density is proportional toL2,045.
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The probability density that the system is in equilibriu
after inserting a permanent bend is shown in Fig. 11
different distances from the end of the superhelix. The d
tribution is quite skewed with a long tail to hight values; the
time when the system has reached the equilibrium with 5
probability is much larger than the time at the maximu
The BD results tentatively show the same behavior~Sec.
III B !.

The probability densities for different branching pro
abilities are shown in Fig. 12. Despite the difference o
factor of 50 in the branching probability there is hardly
change. Thus, in this model the branching probability h
almost no influence.

We then analyzed the scaling of the distribution of t
relaxation time by choosing the time at which the probabi
P for reaching equilibrium is 50% and the probability at th
point. These two values were determined at different leng
for inserting a permanent bend in the middle between
ends of the superhelix, i.e., the maximal distance~Fig. 13!.
Regression with a power law shows that the relaxation t
scales asL22.03 and the probability density scales asL2.04.
Extrapolation to infinite length gives exponents of22.01
60.01 and 2.0260.01, respectively. Using the master curv
one can compute the distribution for all other lengths@30#.
Figure 14 shows four distributions plotted according to
scaling law

PL~ t !5S L̃

L
D 2.04

P̃L̃ F S L̃

L
D 22.03

tG . ~22!

Only minor deviations from this scaling are visible. F
much longer DNA states with three arms will be part of t
equilibrium distribution and states with four arms get sign
cant weights.

V. CONCLUSION

In this work we computed the time scales of structu
changes of superhelical DNA induced by bending us
computer simulations based on a Brownian dynamics mo
We focused on circular, superhelical 1475-bp DNA with

FIG. 14. Scaling plot of the relaxation times of DNA of th
lengths 500, 1000, 2000, and 4000 nm withL05500 nm.
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superhelix density of20.057, which is approximately thein
vivo value, for a solution of physiologic ionic strength. W
confirmed previously reported results that in the equilibriu
state DNA has the shape of an unbranched superhelix. W
out a bend the two double strands are moving diffusiv
against each other with a diffusion constant of (2.560.2)
310212 m2/s.

After insertions of a permanent bend of 90° the syst
relaxed to a state with the bend in an end loop. The rel
ation proceeds by two different mechanisms: a slithering m
tion of the two double strands and restructuring due to f
mation of arms. The relaxation time after inserting
permanent bend was computed for different distances
tween the inserted permanent bend and the end of the su
helix. The mean value is (0.6461.07) ms; the maximum
time when the bend is inserted in the center of the plecto
mic structure is (1.060.7) ms. At an ionic strength of 1M
NaCl the relaxation time is about 2.5 times greater than
0.1M . The calculated times for different superhelix densit
differs only in the range of the errors, in agreement w
previous analytical estimates.

Because the distribution of the relaxation time is qu
skewed and has a long tail it is difficult to obtain results w
reasonable statistics. On different supercomputers we ha
calculate about 500 ms of trajectory time equivalent to
CPU time of about 5 yr on an IBM RS 6000 Power 2.

We showed that it is possible to describe the dependen
of the relaxation time on the distances of the inserted per
nent bend to the end of the superhelix and on the length
the DNA by a simplified numerical model based on a ra
dom walk on a graph. The relaxation time scales with
square of the DNA length. For longer DNA more branch
are probable; then the model would require one to incre
the dimension of the state space. The computed values o
relaxation time are in the range of the reaction times of
zymatic reactions, which means that the kinetics of bind
of DNA-bending proteins can influence transcriptional reg
lation.
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FIG. 15. Definition of the plectonemic region. Segmentsi and j
are nearest neighbors.
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APPENDIX: ALGORITHM FOR END LOOP DETECTION

The basis for the end loop detection is the notion of
plectonemic region@8#. A plectonemic region is defined as
part of the DNA where the two double strands are wou

FIG. 16. Decision whether the end of a plectonemic region is
end loop. Following directiona, we go back to the same region, s
it is an end loop. Following directionb, we reach another plectone
mic region, so it cannot be an end loop.
o-

J.

s.
e

d

around each other in opposite directions. We define the fu
tion nb( i , j ) to be true if segmentj is the next nearest neigh
bor to segmenti ; otherwise it is false. A segmenti is defined
as part of a plectonemic region ifnb„i , j ( i )…, nb„i 21,j ( i )
11…, and nb„i 11,j ( i )21… are trueor if nb„i , j ( i )…, nb„i
21,j ( i )111k…, and nb„i 11,j ( i )211 l …, l ,kP$21,0,
11%, are true~see Fig. 15! and the angles between the se
ment and its nearest neighbor are less thanfplect530°.

After assigning all plectonemic segments we identify su
cessive plectonemic segments and their nearest neighbo
a plectonemic region follows at the end of another one,
first region cannot be terminated by an end loop. In the c
of an end loop the region would be reached again afteS
segments ~see Fig. 16!. If S<Nnonwrithed511 or S
<Nwrithed515 andw( j )<0.5 with

w~ j !5
1

2p E
r j 2q

r j E
r j 11

r j 1q11 ~drW13drW2!•rW1,2

urW1,2u3
~A1!

there is an end loop at this end of the region. The integra
Eq. ~A1! is a measure for the number of strand crossover
projections. Recently, it was possible to enhance the ac
tance rate to 99% by using an exact expression for the i
gral in Eq.~A1! instead of an approximating sum@8#.
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