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Kinetics of structural changes in superhelical DNA
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The time evolution of global structural rearrangements in supercoiled DNA caused by changes in local
bending was investigated using Brownian dynamics computer simulations. Equilibrium states of superhelical
DNA with lengths from 1180 to 1770 base pairs were modeled at different values of the linking number and
in different ionic strength solutions. The introduction of a local bend induces a transition to a new equilibrium
state where one end loop of the plectonemic structure is at the position of the permanent bend. This transition
occurs on a time scale of 1 ms. We find that the transition can proceed either by a “reptational motion” of the
two opposing double strandslithering or by extrusion/absorption of branched parts of the superhelix. We
estimate the diffusion coefficient for the motion of the two double strands against each other. A simplified
model for this kinetics based on a transition matrix is presented. The relaxation time scales approximately with
the square of the DNA lengtfiS1063-651X98)06809-3

PACS numbes): 87.15.Da, 05.46:j, 87.15.He

I. INTRODUCTION induced conformational transitions in superhelical DNA are
comparatively slow; for a structural transition induced by
An important step in the activation of transcription is the placing a bend in the center of an 1870-bp interwound su-
interaction of a transcription factor bound to an enhancer sitperhelix, the characteristic time for forming the new end
with the transcription complex bound to the promoter. En-loop was 0.5 mg8].
hancer and promoter may be hundreds or thousands of base In order to assess the time scales on which such global
pairs apart, too far for a direct interaction, which thereforestructural transitions in superhelical DNA occur and to de-
proceeds through the formation of a DNA loop. The prob-termine their mechanisms, it now becomes important to in-
ability of forming this loop can depend on the structure ofvestigate systematically the dependence of their kinetics on
the intervening DNA. It has been argued, for instance, thaparameters such as DNA length, superhelical density, or
bends induced by other DNA-binding proteins or by specificionic strength. While a variety of techniques have been used
sequences can help form the loop by bringing the ends of th&® model the global structure and dynamics of D84, the
DNA segment into contadtl—4]. major part of such studies focused on analyzing equilibrium
For distances up to about 500 base péif this increase properties of superhelical DNA such as the ratio of twist to
of contact probability is mainly a direct consequence of thewrithe, radius of gyration, or diffusion coefficients. Brown-
bending of the DNA segment. At longer distances, the endian dynamics(BD) [10] offers the unique advantage that,
to-end distance of a linear DNA is not influenced much byunlike other model$11,12, it does not need arbitrary con-
the presence of internal bends; however, it could be showatants or rescaling of energy in order to get the correct time
experimentally{5,6] and theoreticallyf7] that in a superhe- evolution of a polymer chain in a viscous medium. Only
lical DNA bends localize with preference in the end loops ofsuch parameters are used that are accessible by means of
the interwound structure. This localization will greatly en- physical measurements such as flexibility of the DNA,
hance the interaction probability of DNA sites that are lo-charge density, hydrodynamic, and electrostatic radius.
cated symmetrically with respect to the bend. Thus, upon The results of the present article are based on BD-
insertion of a bend into the plectonemic region of a superhesimulated trajectories afL180-1770-bp superhelical DNA
lix, the structure will globally rearrange so that an end loopat varying linking numbers in aqueous solution for a total
is formed at the position of the bend. While the principal Simulation time of 400 ms. We obtain information on the
phenomenon has been known for some time, the kinetics gfquilibrium dynamics as well as the kinetics of structural
structural rearrangements after local bendiegy., due to rearrangement after inserting a 90° permanent bend.
interaction with regulatory proteindas not been studied in
great detail. We have recently given indications that bend-
Il. METHODS
*Present address: SAP AG, Neurottstrasse 16, 69090 Walldorf, A. Brownian dynamics algorithm
Germany. Our BD model is based on the algorithm proposed by
TInstitut fir Theoretische Physik, University of Heidelberg, Abt. Ermak and McCammofil0] and Fixmar{13]. Similar mod-
Vielteilchenphysik, Philosopherweg 19, 69120 Heidelberg, Ger-€ls have been applied to DNA for some tireeg.,[14] and

many. later work by the same authoWe have recently extended
*Author to whom correspondence should be addressed. Electronthie BD algorithm to include the topological constraints of
address: Joerg.Langowski@DKFZ-Heidelberg.de superhelical DNA and local bendiri§,15,4.
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In this work we used the programoORCHY written by TABLE I. Parameters used in the simulation.
Klenin et al. as described in detail i4]. The DNA is de-
scribed as a chain of beads. A local coordinate system is Stretching persistence length 308 nm
attached to each bead. The coordinate system at ibead Bending persistence length 50 nm
be transformed to the coordinate system at biead by a Torsion persistence length 65 nm
Euler transformation with the angles, B;, and y;. The Hydrodynamic radius 1.2 nm
distance between two adjacent beads is much smaller than Electrostatic radius 1.2 nm
the persistence lengtfabout 5 times The beads interact Temperature 20°C
through elastic forces. The energies for stretchlof, Length of segments 10 nm
bendingU®, and torsionU®" can be computed as Time step of simulation 20 ns

kyT
U (by) = ¥ 5= (b~ bf)?,

k,T K, T
Dii=0igmye  Cim Vgrar
i
) gy = o0 KET g2 S 2 S
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Starting from one configuration, the next configuration is
generated by a first-order displacement of the position vec-

torsr; and the relative twisting angles; :
The electrostatic interaction between the charged phos-

kyT
UM (e + ?’i):a(t)T(aiJr )2, ()

N

phate backbone is described by a solution of the Debye- ) ) LSt L
Huickel equation for two charged line segments Fi(t+ &):ri(t)+j21 Diijkb_T"'Ri(t),
2 (6)
©=" [ an [ o, QP ] ] 5t
B =D fd“fdxl 0 @ Bi(t+80=d(1)+D.T 5 +a(DR(D),

D is the dielectric constant of water ardhe inverse of the whereN is the number of segments; the sum of the acting
Debye lengthr;; is the distance between the current posi-forces,D, the rotational diffusion coefficient of a segment,
tions at the segments to which the integration parameterand T, the acting torque. The random displacemeRtsind
\i,\; correspond. The charge per unit lengths chosen g; are Gaussian distributed and have the properties

such that the potential at the radius of the DNA coincides

with the solution of the Poisson-Boltzmann equation for a (Ri())=0, (Ri(t)-Rj(t))=2Dy; ét,
cylinder with charge per lengthf . v§ is the charge per (7)
length of the DNA in the presence of the Gouy layer of (9i(1)=0, (gi(t)g;(1))=2D,5;at.

immobile counterions, which can be computed 53]
We used commonly accepted values for the parameters
vy =qug, (3)  (Table ). During the course of this work a value of 66 nm
for the stretching persistence length was publish#d],

where vo=—2e/A is the charge per length of the naked which is different from the one used hgre. However, as re-
DNA. e is the proton charge anii=0.34 nm is the distance Ported by Hammermanfi9], the quantities simulated here
between base pairs. Following Stigfa6], the value ofg is &€ not'lnfluerjced much b)_/ g_change in stretchllng constant.
0.73. In order to save computation time a tabulation of the All simulations started initially from a flat circle. The
the double integral2) is used. The table is parametrized by Measurement started after full relaxation of the system,
the distance of the segments and three values describing if41Ch took about 1-2 ms corresponding to the slowly decay-
relative orientation. During the simulation a linear interpola-N9 component of the relaxation of the writpg].
tion was used to obtain the forces.

Bent sequences are realized using a veBtodescribing B. Characterization of the structure
the_ equilibrium position of one segment \_/vith respect to its 1. End loop detection
neighbor segmeri4]. The energy of bending changes then _ )
to The global structure and dynamics of a plectonemic su-

perhelix can be described by a plot of the end loop positions
kT versus timd 20]. While we and others have described several

u® () =a®——6?, (4)  algorithms for automatic end loop detecti¢®,8,20, we
2 found their detection efficiency not always satisfactory. We

o therefore developed an improved algorithGAppendiy,
where 6, is defined by cos{)=B;-u;,; with the vectoru; which we tested by comparing the automatically detected
pointing from bead to beadi+ 1. Hydrodynamic interac- end loop positions in 150 random configurations with their
tions are treated using the Rotne-Prager tefisaf visualizations. All end loops determined by the algorithm
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were also found by visual inspection without any false posi-  4.0x10%
tives; about 10% of the loops were false negatives, i.e., the
algorithm could not find them, although they were present in
the visualization.

5!

3.0x10"2 |
2. Superhelix diameter

The nearest neighbar,,(i) of a segment is defined as
the segment with the shortest distancé txcluding a num-
ber of adjacent segments equal to the number of segments ir
an end loopeight in our case The superhelix diametetsy »
is calculated as the mean value of the distance of each seg- "'%" |
ment to its nearest neighbf21]:

2.0x10" |

mean squared displacement [m

dsp=[Xi(t) =X, iy (1)]. €S) 00

0.000 0.605 0.610 0.615 0.020
time difference [s]
In contrast to the original definition, we omitted the seg-

ments in the end loops because they do not belong to the FIG. 1. Mean of the squared displacement of the center of mass
plectonemic regiofs) by skipping the four segments that are at atime dlffgrencez_vst ofa _50-nm linear DNA_ structure at (ML
adjacent to the segment detected as an end loop. NaCl and a linear fit of the first 15 mglashed ling

3. Diffusion coefficient looped branched configurations are observed. It is equivalent
) ) ) to a fraction of branched states of 2.240.12. This is an
The random movement of a point M-dimensional space annroximate value because the trajectory is too short for an
can be described by a random walk. The mean square of thgact determination of this value: Here we observed only one
displacemenk(t) of the point after a time is short time period of three arm configurations.
The apparent slithering diffusion coefficient of this sys-
tem D¢ =(x?)/2t is plotted against in Fig. 3. It decreases

The random movement of both strands of a plectonemi(‘f"ith L, ir_1dicating the predomir_lgnce of faster Ioca_l motion on
structure against each oth@tithering can be described as a Shorilz“mf scales. The initial value oDy is 31.7
one-dimensional random walk. We can calculate a diffusion 10~ M7s. Ds approaches a plateau for largeThe sta-
coefficient for this motion through the change in the end loogHStical noise for values greater than 0.4 mskay becomes
position. The random displacementis calculated using the rather high so tha_lt the plateau value is bett_er determined
difference between the position of one end loop of the con{fOM an extrapolation oD, versus ]Ilitgzt—;oo (Fig. 4. The
sidered configuration and that of the start configuration aftePlat€au value oDy is (2.5:0.2)x 10" m7s.
the timet. For a one-dimensional random walk with diffu- '€ dynamics of the DNA changes if we introduce a per-

sion coefficientD, the mean square displacemen®) is, manent bend in the chain. Figure 5 is an end loop plot of the
according to Eq(9) same superhelical DNA as above but with a permanent bend

at position 0. Almost always the end loops are located
(x?)=2Dgt. (10  around 0% and 50% of the length of the DNA. We observe
three arm branched configurations in the intenj&l$ ms,
A plot of Dg)(t)=(x?)/2t versust will yield the dependence 7.8 mg, [10.9 ms, 13.4 mis and[14.4 ms, 16.3 ms Skip-

(x?)=2NDt. 9)

of Dg, on the time scale. ping the first 1.5 ms we compute an approximate ratio of
100 T T
lll. RESULTS = ST -
A. Equilibrium - - == E—_-__? : E= '= __:_:
In order to check the hydrodynamics obrRCHY we per- sE 205 = (= ¢ T

formed simulations of a 50-nm linear DNA fragment at
I=0.1IM NacCl for 40 ms. Figure 1 shows the mean of the
squared displacement of the center of mass at a time differ-
encet vst. A fit of Eqg. (9) to the first 15 ms results in a
diffusion coefficient of (2.8%0.01)x 10! m?/s.

Brownian dynamics calculations on a superhelical DNA
were done for each set of parameters for 5-20 ms. Figure 2 2°
shows the end loop plot of a 1475-bp DNA structyb®d
segmentsat ALk= —8 and an ionic strength of (M. NaCl.

After the first millisecond the DNA has two end loops and 0
the writhe has reached its equilibrium valydata not
showr). Most of the time we find two end loops with a
distance of about 50% of the total length, indicating the ab- FIG. 2. Positions of end loops of a 1475-bp DNA structure
sence of branches. For a total time of about 2.2 ms, thredALk=—8, 0.IM NaCl) versus simulation time.

relative position (percent)

o
ofll
(%]
o

20.0
time [ms]
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FIG. 3. Diffusive motion of the two strands of the superhelix  FIG. 5. Positions of end loops of 1475-bp DNALk=—38,
(slithering of a 1475-bp DNA structureXLk=—8, 0.1M NaCl). 0.1M NaCl, with a permanent bend at 0% of the length, plotted
The diffusion coefficienDg = (x?)/2t is plotted against. against simulation time.

branched states to 5.7/18:8.3, which is about 3 times B. Nonequilibrium

higher than without the bend. As we have seen in Sec. Il A, the most probable configu-
Systems that differ in lengtti1180—1770 bp linking  ration for the superhelical DNA considered here is un-
number (-6 to —8), and ionic strength (0.04—1M NaCl)  branched and has the permanent bend at one end loop. If we
from the previous system were calculated for 5 ms, each witPut @ new permanent bend into a configuration of a nonbent
a permanent bend of 90°. We confirmed the previous obseRNA structure, we expect this permanent bend to move to
vation of this and other groups that in these systems DNANE end loop. To assess the relaxation time for this process
has a linear plectonemic structure with the bend in an end'® first equilibrate the starting configuration with a perma-

loop [7,21]. Corresponding superhelix diameters are summahent bend at position 0, change the position of the permanent
rized in Table II. The errors of 1475-bp DNALk=—8 at bend to another location, and continue the simulation until

. . equilibrium is reached again.
I=0.1M, are smaller because, due to a longer simulation q 9

) L . X thering until the permanent bend has reached one end

factor of 4—5 ns. With this time step it was not possible toloop and is trapped there, or a new arm is formed and grows

collect enough data in reasonable time so that we decided Ngtil one of the initial arms disappedi&]. We observed both

to examine the end loop dynamics of superhelical DNA un-yechanisms: In Fig. 6 we see end loop plots of two different

der these conditions. simulations, each one exhibiting one type of restructuring.
Since both slithering and rearrangement of arms occur in

a random, nondirected way, one would expect a dependence

410" ' ' ' of the relaxation time on the distance between the bend and
the end loop. We have performed simulations of a 1475-bp
DNA structure withALKk=—8 at an ionic strength of OM

310" NaCl and determined the relaxation time as a function of this

distance. The mean values of the relaxation times of ten cal-
culations for each distance are shown in Fig. 7. The relax-
ation times show a broad distribution around the mean value.
The overall mean value is (0.641.07) ms, but a clear
maximum is seen if the bend is inserted in the center.

Figure 8 shows the mean relaxation times after inserting a
permanent bend at a distance of 80 (286 bp from the end
loop for lengths between 1180 and 1770 bp. The other pa-
rameters(superhelix density and ionic strengtfemain un-
changed. For each length we performed eight simulations.
The mean relaxation times after inserting a permanent bend
at the same distance for superhelix densities betwe@i043

FIG. 4. Diffusive motion of the two strands of the superhelix and —0.057 are shown in Fig. 9. The relaxation time under
(slithering of a 1475-bp DNA structureXLk=—8, 0.IM NaCl).  these conditions at OM NaCl is (0.64-0.29) ms, at M
The diffusion coefficienDy, is plotted against 1/ (1.61+1.63) ms.

D [m2s]

2-10"

1-10"

0.0 200.0 400.0 600.0 800.0 1000.0
1/t [1/ms]
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TABLE Il. Mean value and standard deviation of the superhelix diameter dependent on physical parameters. If not mentioned differently,
the length is 1475 bp, the superhelix density-i6.057, and the ionic strength is G41NaCl.

Length (bp) dsy (nm) lonic strength W NaCl) dgy (nm) Superhelix density  dgy (nm)
1180 9.x1.9 —0.057 10.41.0
1475 10.4-1.0 0.1 10.41.0 —0.050 13.2:2.8
1770 10.9-1.7 1 8.7%1.4 —0.043 15.33.7
IV. DISCUSSION . keT . ,
cyl_ _ a8 -1_ —
A. Equilibrium D=5 i (IN P~0.207+0.98p 1 ~0.13%2),
According to Tirado and Garcia de la Torf22,23, the | kT (12
diffusion coefficient of a cylinder with length and hydro- DY =2 (N p—0.839+ 0.18% '+0.239?),
dynamic radiug ,p is K
I
DY'=(1/3)(D¥'+ 2D, (12) P= 5 (13
. where 7 is the viscosity of the solvent aridits temperature.
with For a rod of length 50 nn{147 bp and a hydrodynamic
radius 1.2 nm, Eq(11) yields 2.8% 10~ ! m%s. The persis-
100 . . tence length of DNA is 50 nm, therefore we considered this
Tl fragment stiff in a first approximation. The value computed
b1 . by Brownian dynamicg (2.85+0.01)x 10"t m%s] agrees
o il D 2n with the rigid rod value within statistical error. Experimental
s : = L L sedimentation velocity studies of double stranded DNA frag-

ments of 145-bp DNA vyield a sedimentation coefﬁciegﬁW
of 5.2 [24]. This is equivalent to a diffusion coefficient of

relative position (percent)

50 Rlmam | 2.7 10 ' m?s, again in good agreement with our compu-
Tt TR tation.
m— Monte Carlo calculations of equilibrium configurations of
TR . . - superhelical DNA were done by Vologodskit al. [21].
25 S L e T With the results presented there it is possible to calculate the

ratio of conformations with three armgvithout permanent
bends$. For DNA of 1475 bp and superhelix density0.057,

-3 their equations predict a ratio of 0.03, which is about 4 times
%00 0.25 0.50 0.75 1.00 smaller than our value for DNA without permanent bends.
(a) t [ms] Our value is more approximate because the trajectory is too
100 - . .
2.0

= 757 : . ol 15 T T |
c = ses = - T—
8 —TE e H
& = .o T RE T E= T " T
T E— — T L] T 1
2 50> 1 E "y T
7] —_ ~
[e] -~
3 = 05 i
2 = — T
; = = = LT
g 25+ b . o iy — |-

. 0.0+ e

00; : 0'5_ —5 '1'5 =5 %0 500 1000 150.0 200.0 250.0

(b) : ’ t [ms] ’ ! distance [nm]

FIG. 6. Positions of end loops plotted against simulation time FIG. 7. Relaxation time for different distances of the inserted
after inserting a permanent befa) at 26% of length showing slith- permanent bend to the end of the superhelix. Data are from simu-
ering and(b) at 32% showing structural rearrangement. lations (bold squaresand the simplified mode(ircles.
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TABLE Ill. Comparison of the values of the superhelix diam-
eter(nm) measured by Bolest al. and our results.

Superhelix density Experiment Theory
—0.057 11.9 1041.0
—0.050 13.4 13.22.8
—0.043 15.3 15.33.7

tions a superhelix without a bent sequence is always un-
branched. Our calculations disagree with their observation
that DNA with a bend is mostly branched.

We find that the slithering diffusion coefficient of a
1475-bp DNA structure at short time scales is 31.7
X 10 12 m?s. This is in agreement with the value of 30
X 10" 12 m?s calculated by Chirico and Langowski analyz-
ing the motion of one segment tangent to the ch&in The
diffusion coefficient for larger time scales decreases to (2.5

FIG. 8. Relaxation time after inserting a permanent bend for=0.2)x 10" m?s; this smaller value corresponds to the

different lengths of DNA. The data from simulatiofsguares with
bold error barsare compared with the simplified modeircles.

correlated slithering of the whole chain.
Superhelix diameters for different superhelix densities de-
termined by electron microscopical methd@§] are in good

short for an exact determination of this value. This can bedreement with the values calculated hefable Il). The
seen, e.g., from the fact that we observed only one short timgeasured and the theoretical values agree within 5%, which
period of three-arm configurations. Nevertheless, both valuel§ Smaller than the error of about 1 nm of the theoretical and
are of the same order of magnitude. experimental values. It is notable, however, that all three
A comparison of Fig. 2 with Fig. 5 suggests that this ratiotheoretical values are bigger than the _measured ones. The
is bigger for DNA with a permanent bend. This is in agree-"€ason could be the procedure of analysis of the experimental
ment with results of simulations by Sprous and Harf2%]. data. Bolest al. also report about another more approximate
Klenin et al.[7] report a ratio of 0.25 of branched states for Procedure of analysis whose results are about 1 nm bigger.
2700-bp DNA with and without a permanent bend. ThisHowever, they examined DNA fixed on a surface and we
might suggest that a permanent bend has less influence #nvestigate free DNA in solution.
the global structure of longer DNA. All studies predict that _Recent scanning force microscope measurements of
permanent bends are located at an end loop with high pro-868-bp superhelical DNA27] gave an average superhelical
ability. diameter of 229 nm at a superhelix density ofr=
Sprous and Harvey on a 1260-bp DNA structure with a
model based on molecular dynami25]. Their end loop
plots look similar to those presented here. In their calcula-

B. Nonequilibrium

A smaller set of nonequilibrium states of 1870-bp DNA
(ALk=—10) was analyzed by Chirico and Langow$gi.

By analyzing trajectories up to 2 ms they concluded that
large-scale changes of conformation are mainly caused by
the rearrangement of branches rather than slithering. This
analysis with about 40 times more data now implies that
slithering is another important mechanism of restructuring.

: For a detailed analysis of the dependence between the slith-
o ; ering diffusion coefficient and the restructuring time see Sec.

1.5 T

t [ms]

0.5

0.0

-0.050 -0.055

superhelix density

-0.045

-0.060

IV C.

Tan et al. investigated shorter DNA600 bp using mo-
lecular dynamics simulations without hydrodynamic interac-
tions[20]. They found that at higher superhelix density the
structural changes are mainly caused by slithering while at
lower superhelix density structural rearrangements become
more important. This conclusion may not be valid for larger
DNA structures, 600 bp being equal to about only four per-
sistence lengths. The calculated relaxation time is of the or-

FIG. 9. Relaxation time after inserting a permanent bend forder of nanoseconds, about six orders of magnitude faster

different superhelix densities. The data from simulatisquares

than in calculations using Brownian dynamics such[&ls

with error barg are compared with predicted values according toand our investigations. The cause of this difference is the

Eq. (15 (diamonds.

lack of stochastic forces and hydrodynamic friction in the
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permanent bend end loop. The total length remains constant and therefore the
system can be described by the lengths of two arms. The
system is moving in a two-dimensional state space. At each
step there are six different possible transitions for branched
and four for unbranched states. In our model the equilibrium,
where the bend is in an end loop and no branches are present,
has the property

The changes of the lengths can be described as a random

FIG. 10. Model of DNA that consists of three loops that change ; . .
their lengths in a diffusive manner. The double arrows symbolizewalk on a directed weighted graph. The vertices of the graph

the possible transitions. The permanent bend is located at the tip [ppresent possible stateg and the .‘?dges pO_SSIbIe transmons.
loop 3. ach vertex has a certain probability of being occupied at

each time step. For the next time step the new probability of
a vertex being occupied is given by the probability of the
neighbor vertices weighted by the probabilities of transition,
.e., the weights of the edges.

The probability of a state with arm lengthsandl, after
p steps can be described using(rrmalized probability

thermal molecular dynamics model.

A possible explanation of the different relaxation times at.
different superhelix densities is proposed by Marko and Sigl
gia[28]. From the diffusive motion of two parallel cylinders
along their long axis they estimate a typical time for a diffu-

sive slithering motion of superhelical DNA: matrix (15, 12):
2wyl L
——— 14 _
™" KkeT IN(RITy) (19 2, Wellnl) =1 (17

71s the viscosity of water, 2 the length of the DNAry the 10 5ms of the probabilities at the vertices fulfilling condi-

hydrodynamic radius of the DNA, ard the superhelix ra-  jo (16) give the probability that the system has reached an

. - . 3 . .
dius. While 7 spalt;s withL", the relaxation times we 0b-  oqilibrium state in this step. The probability that the equi-
served scale with.© [Eq. (9)]. The other scaling behavior piim states are reached aftersteps is then
reflects that DNA is not stiff. It can be thought of as consist-

ing of smaller parts that move independently, changing their
distance to each other. A detailed analysis has been done L

recently by Markd 29]. As an approximation we can assume ;0 Wo(0N) +;0 Vp(X,0). (18)

that the time scales of the motion of the smaller parts scale

W'th superhelix d|am_eter In the same waygsand thgrefore .The state after each time step can be calculated using a trans-
estimate the relaxation time at different superhelical densi;z ey
. . . fer matrix T:
ties. Equation14) can be written as

L

V=TV, (19)
P In(Ry /1) o P

= . 15
72 In(Ry /rp) (15)

Ta. 1.har 1y IS the probability for the transition from state
(I3.1)05.15)
{l1,1,} to {li,153}. For equilibrium states we have

Starting from the relaxation time at=—0.057 and the Ta,1,0,.,=1 and zero for transitions to other states. For

calculated superhelix diametéFable 1), we determine the L2 . . .
relaxation times at other superhelix densiti€sg. 9). The nonequmbrlum{ll,lzl} only six transitions are posglb(ar-
results seem to be compatible with the values obtained frorf®WS in Fig. 10. This means that them, i,)a; 1) is zero
the simulation. except in the cases

C. Simplified numerical model l,—1==+100,—1,=0

In order to get an estimate of the scaling of the relaxation
times as a function of different parameters such as length or , ,
position of inserted bend we developed a simplified model lo—l;==+100,—1;=0, (20)
that allows us to get these times with much less computa-
tional effort. The model consists of three arms with varying
discrete numbers of segmeritee Fig. 10 One move con-

sists of a segment interchange between the arms with the . ) .
lengthsl,,1,,l5. We assume that the influence of the prob_The probability that a state with two arms changes into a

ability for each of these moves on the configuration can bec,tate with three arms is expressed by the branching probabil—
neglected. The permanent bend is always at the tip of arm 3 Worancn- Thus the elements i, 1,)q; 1;) can be written
This excludes branched states where the bend is not in dor nonequilibrium{l,,l,} as
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p [1/ms]

2.0 3.0 4.0
t [ms]

FIG. 11. Probability density of the relaxation times for the dis-

tances 6, 8, and 12 segments of 50 segments of the permanent benc

to the end of the superhelix. The times at which the total probability
has reached 50% are marked with vertical lines.

1/, I+ 1l<LOj+15<L
O!S_Wbrancl"lzl |1+|2:LD|1+|é=L
Whranc/2, |1+|2=LDH+|é<L

0, in all other cases.
(21

T(|1,|2)<|1,|é):

Starting from one special configuratidih,, we can com-
pute the probability matrice¥,; p>0 iteratively using Eq.
(19). The probability to reach equilibrium is given by Eq.

p [1/ms]

t [ms]

(b)

FIG. 13. Finite size scaling for different sizes of the system. The
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1000

| [nm]

10000

100

1000
| [nm]

10000

(18). From this distribution of the relaxation time we can permanent bend is inserted in the middle between the ends of the

compute the mean and variance.

superhelix. The abscissa shows the length of the ONAnd the

The relation between a model step and a real time step igrdinate(a) the probability density at 50% total probability atta)
not givena priori and one has to calibrate the time scalethe time at this probability. The relaxation time is proportional to

N
=]

o
3

o
'S

probability density (1/ms)
o
>

o
()

0.0

t [ms]

5.0

L~2% and the probability density is proportional t3-%4®

against the BD simulation. For that reason we compared the
relaxation times for different distances between the inserted
permanent bend and the end of the superhelix from the simu-
lation and the times predicted by the modske Fig. 7.
Using a Gaussian least-squares method we found that the
value 1 ms/145.#6.9 us per step in the model minimized
the difference between the simulation and model. With this
value we calibrated the calculations of the model for differ-
ent lengths of DNA and compared it with the results from the
BD simulations(Fig. 8 with good agreement.

The mean time of the diffusive motion of a segment by its
own length in BD simulations can be computed using the
slithering diffusion coefficient and Eq10) to 20 us of the
same order as the calibration value. Therefore, it is possible
to describe the dependence of the relaxation time on the dis-
tance of the permanent bend from the end of the superhelix
and on the length of the DNA by a simplified numerical

FIG. 12. Distribution of the relaxation times after inserting a model without adjusting parameters such as the branching
permanent bend at a distance 9 segments away from the end of tigobability. This model also allows one to calculate larger
superhelix in a chain of 50 segments for branching probabilities oSystems with more branches; the state space will then have a
1 (dashed ling 0.5 (solid line), and 0.02(dotted ling.

higher dimension.
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0.008 , ' superhelix density of-0.057, which is approximately tha
—— 500 nm vivo value, for a solution of physiologic ionic strength. We
- ;888 nm confirmed previously reported results that in the equilibrium
0.006 | - 4000nm state DNA has the shape of an unbranched superhelix. With-

out a bend the two double strands are moving diffusively
against each other with a diffusion constant of (2(52)
X102 m?s,

After insertions of a permanent bend of 90° the system
relaxed to a state with the bend in an end loop. The relax-
ation proceeds by two different mechanisms: a slithering mo-
. tion of the two double strands and restructuring due to for-
mation of arms. The relaxation time after inserting a
permanent bend was computed for different distances be-
0,000 . tween the inserted permanent bend and the end of the super-
0.0 250.0 500.0 750.0 helix. The mean value is (0.641.07) ms; the maximum

(L/L0)*°% [ms] time when the bend is inserted in the center of the plectone-

FIG. 14. Scaling plot of the relaxation times of DNA of the mic structure is (1'& .0'7) ms. At an lonic strength ofi

lengths 500, 1000, 2000, and 4000 nm with=500 nm. NaCl the relaxation t|me is abogt 2.5 times gregter tha}r) at
0.1M. The calculated times for different superhelix densities
differs only in the range of the errors, in agreement with

0.004

(L/Lo)~2%% [1/ms]

0.002

The probability density that the system is in equilibrium . X .
after inserting a permanent bend is shown in Fig. 11 foPrévious analytical estimates. o
different distances from the end of the superhelix. The dis- Because the d|str|but|9r! .Of thg relaxatlon_ time is qu.|te
tribution is quite skewed with a long tail to highvalues; the skewed and has a long tail it is difficult to obtain results with

time when the system has reached the equilibrium with 5094€@sonable statistics. On different supercomputers we had to
probability is much larger than the time at the maximum.calcmate about 500 ms of trajectory time equivalent to a

The BD results tentatively show the same behayi®ec. CPU time of about _5.yr on an IBM RS 6.000 Power 2.
NB). We showed that it is possible to describe the dependences

b- Of the relaxation time on the distances of the inserted perma-

The probability densities for different branching pro ;
abilities are shown in Fig. 12. Despite the difference of ahent bend to the end of the superhelix and on the length of

factor of 50 in the branching probability there is hardly a'h® DNA by a simplified numerical model based on a ran-

change. Thus, in this model the branching probabilit hagom walk on a graph. The relaxation time scales with the
aImogt no i:fluelnce.l "9 P y square of the DNA length. For longer DNA more branches

We then analyzed the scaling of the distribution of thed’® probab_le; then the model would require one to increase
relaxation time by choosing the time at which the probabilitythe dimension of the state space. The computed values of the

P for reaching equilibrium is 50% and the probability at this relaxa_tion tim_e are in _the range of the rea(_:tior_1 times .Of en-
point. These two values were determined at different IengthéymatIC reactions, Wh'.Ch means that the klnetl_cs_ of binding
for inserting a permanent bend in the middle between th f.DNA-bendlng proteins can influence transcriptional regu-
ends of the superhelix, i.e., the maximal dista€ry. 13). ation.

Regression with a power law shows that the relaxation time

scales ag. ~%% and the probability density scales &%

Extrapolation to infinite length gives exponents of2.01 ACKNOWLEDGMENTS

+0.01 and 2.020.01, respectively. Using the master curve,  Thjs work was supported by a grant from the German
one can compute the distribution for all other lengfB8]. Scholarship Foundation to Gero Wedemann and by BMBF

Figure 14 shows four distributions plotted according to thegrant No. 01 KW 9620(German Human Genome Project
scaling law DHGP).

'I: 2.04~ 'E —-2.03
PLO=\T] PllT t. (22)

Only minor deviations from this scaling are visible. For
much longer DNA states with three arms will be part of the
equilibrium distribution and states with four arms get signifi-
cant weights.

V. CONCLUSION

In this work we computed the time scales of structural
changes of superhelical DNA induced by bending using
computer simulations based on a Brownian dynamics model. FIG. 15. Definition of the plectonemic region. Segmenasdj
We focused on circular, superhelical 1475-bp DNA with aare nearest neighbors.
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around each other in opposite directions. We define the func-
tion nb(i,j) to be true if segmentis the next nearest neigh-
bor to segment; otherwise it is false. A segmenis defined

as part of a plectonemic region iifb(i,j(i)), nb(i—21,j(i)

+1), andnb(i+1,j(i)—1) are trueor if nb(,j(i)), nb(
=1,j(i)+1+k), and nb(i+1,j(i)—1+1), l,ke{-1,0,
+1}, are true(see Fig. 15and the angles between the seg-
ment and its nearest neighbor are less t#gp .~ 30°.

After assigning all plectonemic segments we identify suc-
cessive plectonemic segments and their nearest neighbors. If
a plectonemic region follows at the end of another one, the
first region cannot be terminated by an end loop. In the case
of an end loop the region would be reached again &fter
segments (see Fig. 18 If S<Nponwrithee—=11 Or S

FIG. 16. Decision whether the end of a plectonemic region is ar=Nyitheq=15 andw(j)<0.5 with

end loop. Following directiom, we go back to the same region, so
it is an end loop. Following directioh, we reach another plectone-

mic region, so it cannot be an end loop.

APPENDIX: ALGORITHM FOR END LOOP DETECTION

+a+ dr><dr r
W(J)——J Jl q+1 (Al Xdrp) Ty 2) 12 (A1)

|r12|3

there is an end loop at this end of the region. The integral in
Eqg. (A1) is a measure for the number of strand crossovers in

The basis for the end loop detection is the notion of theprojections. Recently, it was possible to enhance the accep-
plectonemic regiof8]. A plectonemic region is defined as a tance rate to 99% by using an exact expression for the inte-
part of the DNA where the two double strands are woundgral in Eq.(Al) instead of an approximating suf8].
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